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Abstract

A novel set of auxiliary equations, which supplement the fundamental boundary integral equations, for the
treatment of corners and edges arising in discontinuous traction problems and at zonal intersections is derived.

Based on these equations, an e�cient linear 3D multi-region BEM algorithm is presented which can deal with
arbitrarily many regions. Numerical examples demonstrate the e�ectiveness of this algorithm. # 1999 Elsevier
Science Ltd. All rights reserved.

1. Introduction

In multi-region BEM algorithms in solid mechanics, the treatment of corners and edges requires

particular attention since displacements are uniquely de®ned but the tractions are multi-valued.

Development of such algorithms has important applications to cracked bodies, in the context of fracture

mechanics (Raveendra and Cruse, 1989). One obvious way to tackle this problem is to `round-o�'

corners and edges (Jaswon and Symm, 1977), but evidently this is not possible in multi-region problems.

Alternatively, one could adopt the `unique traction' assumption, namely that the tractions are equal on

each contiguous surface (Cruse, 1974), although this violates the equilibrium condition. Although

Lachat and Watson (1976) suggested that the errors incurred by this treatment are mainly con®ned to

the corners, Alarcon et al. (1979) pointed out that this can lead to signi®cant errors in the evaluation of

the solution at interior points. In this paper, we also demonstrate that the `unique traction' assumption

yields unacceptable results at corners formed by the intersection of more than two regions. Avoiding the

problem by using `discontinuous elements', has signi®cant disadvantages in terms of solution stability,

computational e�ort and accuracy (Wilde, 1998).

To treat corners and edges rationally, it is necessary to introduce additional nodes and then develop

auxiliary equations to determine the additional unknowns. For example, in the context of potential
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problems, Banerjee (1994) introduced a resistance relationship for this purpose. For 2D linear elasticity,
Chaudonneret (1978) derived auxiliary relationships, based on the symmetry of the stress tensor and the
invariance of the trace of the strain tensor. Wardle and Crotty (1978) and Mustoe (1980) used a polynomial
interpolation to establish a relationship between tractions and displacements. Rudolphi (1983) described an
implementation using quadratic elements for zoned problems, including discontinuous stress components.
Zhang and Mukherjee (1991) generated auxiliary equations, for plane strain, by expressing the stresses at a
corner as a linear combination of tractions and tangential displacement derivatives. Since all of these
auxiliary equations are based on Hooke's law, they are restricted to linear analyses. Further, some workers
assume an unique stress state (at corners), which is invalid in general (Zhang and Mukherjee, 1991).
Moreover, methods proposed for 2D applications are generally insu�cient in 3D.

In this paper, a novel set of auxiliary equations is derived from the symmetry property and the
equilibrium equations of the stress tensor. These equations do not depend on the displacement ®eld, nor
on Hooke's law, which suggests wider applications to non-linear and dynamic problems. Further, we
treat the multi-region problem for more than two intersecting zones for the ®rst time.

2. Problems of corners and edges

In elasticity problems, the BEM algorithm can be derived by discretizing the boundary of the problem
into elements as follows:
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where c is constant associated with the geometry, Me is the total number of elements, ue and te are the
nodal displacements and tractions over the e-th element, Ne are the interpolation functions, and U e and
T e are the Kelvin's fundamental solutions for displacements and tractions, respectively.

At zonal intersections, the displacements are uniquely de®ned but the tractions are multi-valued since
each surface has, in general, di�erent outward normals. We de®ne additional (coincident) nodes at the
intersection so that each node is shared by not more than two regions. Thus, for N original boundary
nodes (including corner nodes) and ~N additional nodes, the resulting system equations are:

�H�fug � �G�ftg �2�
where, �H � is a 3N � 3N matrix and �G � is a 3N� 3�N� ~N � matrix for 3D problems. Since the system
equations provide only 3N equations, 3 ~N additional (auxiliary) equations must be established.

3. Auxiliary equations for corners and edges

The tractions can be expressed in terms of stresses as:

ti � sijnj �3�
in which, nj are the components of the unit outward normal n and the repeated index represents
summation. For a point on a surface, we introduce a local Cartesian co-ordinate system x 0i , i � 1±3,
with the axes x 01 and x 02 tangential to the surface and x 03 in the n-direction (Fig. 1).

The global quantities, co-ordinates and tractions, can be transformed into the local co-ordinate system:
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x 0i � Lijx j �4�

t 0i � Lijtj �5�

where

Lij � @x 0i
@xj

: �6�

This leads to the relationships:

@ t 0k
@x 0k
� Lki

@sij
@x 0k

nj � @sij
@xi

nj: �7�

Using the equilibrium equation, namely:

@sij
@xi
� r �uj ÿ fj �8�

we obtain:

@ t 0k
@x 0k
� �r �ui ÿ fi �ni �9�

in which, fi and �ui are the components of the body force and acceleration vectors, respectively, and r is the
mass density.

This (auxiliary) equation is a general relationship between the tangential components (k � 1±2 only)
of the traction vector and is valid whether the stress ®eld is continuous or discontinuous. Although
derived for 3D problems, it is also valid for 2D problems (with k � 1 only). After some manipulations
(see Appendix) we obtain, excluding body forces for simplicity:

Fig. 1. Three-dimensional local orthogonal set of axes.
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@xk
@x 0p

Lpi
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@xk
tai � 0 �10�

where tai is the i-th component of the traction at the a-th node.
Now eqn (10) can be readily implemented within the BEM code. Although this equation provides

su�cient equations in 2D, it may be insu�cient in some 3D problems. In such cases, we derive
supplementary equations by invoking the assumption that the stress tensor is continuous at a corner
(edge). For a corner, at the intersection of surfaces Sa and Sb, (with unit outward normals na and nb,
respectively) we have:

nb
i t

a
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i sijn
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j

na
i t

b
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isijn
b
j : �11�

From the symmetry of the stress tensor, it follows that:

nb
i t

a
i � na

i t
b
i : �12�

The 2D form of this equation was ®rst obtained by Chaudonneret (1978). For single region problems,
eqn (10) yields one equation for each node de®ned at a corner (edge) while eqn (12) produces one
equation for two nodes with di�erent normals. However, at an interface node shared by two zones,
these equations can be applied to one zone only.

For the 3D two-zone edge intersection (with two nodes), and after consideration of the interface
conditions, there remains nine unknowns (three displacement components and six traction components).
Six equations are provided by the BEM and two auxiliary equations can be obtained from eqn (10) and
one from eqn (12). For the 3D three-zone edge intersection (with three nodes), there are twelve
unknowns. While the BEM formulation provides only nine equations, six auxiliary equations (three
from eqn (10) and another three from eqn (12)) are available. As expected, eqn (10) provides better
results, since this avoids the restrictive `continuous stress' assumption. In general, the number of
auxiliary equations which must be invoked for corner or edge points is

m � d ��nÿ p� 1� �13�
where, d = 2(3) for 2D (3D) problems, n is the number of the nodes associated with the point, and p is
the number of the zones meeting at that point.

4. Multi-region BEM algorithm

Various assembly methods can be used to establish the multi-region system equations (Banerjee and
Butter®eld, 1981; Brebbia et al., 1984; Kane et al., 1990). In the present study, we employ a di�erent
substructure technique. The discretized BEM eqn (2) for the i-th zone can be expressed as:

�H i ��ui	 � �G i ��ti	 �14�
�H i � and �G i � are square and rectangular coe�cient matrices, respectively, and fui g and fti g are column
vectors of nodal displacements and tractions.

We collect the nodes for each zone into two sets. The ®rst set includes the nodes solely associated
with a single region. This set of nodes are called `external nodes' and will be eliminated at the zonal
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level. The remaining nodes reside on region-to-region interfaces. For convenience, all the nodes
associated with the corner and edge points are classi®ed into the latter set. Eqn (14) can then be written
in the form:
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in which, the subscript I denotes displacements at the region-to-region interface nodes (Fig. 2); the
subscript S denotes tractions at the system nodes (interface and additional nodes), and the subscript E
denotes the quantities at the remaining external nodes associated with a single region. The boundary
conditions are applied at the zonal level and, after shifting the unknowns to the left-hand side, the
block-banded matrix, eqn (15) becomes, after some manipulation:

�
Ci

II

��
uiI
	 � �Di

IS

��
tiS
	� �Yi

I

	
: �16�

It is convenient to de®ne a global traction vector ftSg for all the interface nodes and all the additional
nodes, such that the local traction vector ftiS g can be expressed in terms of ftSg by the equation:

ftiSg � �Lti�ftSg �17�

where �Lti � is the `traction location matrix' for zone i, consisting only of 0, 1 andÿ1. The construction of
�Lti � takes into account the interface equilibrium conditions; for example, the condition ft1Sg � ÿft2Sg on
the interface shared by zone 1 and zone 2.

We also de®ne a global displacement vector �uI� for all the interface and additional nodes and
introduce a displacement location matrix �Lui � for zone i, consisting of 0, 1, thus:

fuiIg � �Lui�fuIg �18�

where �Lui � identi®es the zonal compatibility conditions.
Assembling the zonal equations, together with the auxiliary equations yields the ®nal system equations:

Fig. 2. A two-zone problem.
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in which, [EA] and {YA} are generated from the auxiliary equations and the traction boundary
conditions. This assembly technique permits simultaneous solution of both displacements and tractions
for the interface and additional nodes.

If a region is not explicitly prevented from undergoing rigid body displacements, then the solution
technique fails. In this situation, the SVD technique (Press et al., 1992) provides a convenient means of
overcoming the problem, albeit at the expense of greater computational time. Numerical problems may
also occur if the ratio of the values of the coe�cient matrices of ftSg and fuIg become unduly large. This
di�culty can be circumvented by normalising the coe�cients by a representative value of shear
modulus. Evidently, the same representative value must be used for all zones.

5. Numerical examples

The 3D elastostatic multi-region BEM computer code (ESMI-3D), written in FORTRAN 77, can deal
with arbitrarily many zones using 4-node linear and 8-node quadratic elements. An in®nite boundary
element technique (Davies and Bu, 1996; Gao and Davies, 1998) provides an e�cient means to deal with
semi-in®nite domains. Two representative examples, solved using single precision arithmetic, are

Fig. 3. A cube undergoing a displacement u � 10.

X.-W. Gao, T.G. Davies / International Journal of Solids and Structures 37 (2000) 1549±15601554



presented here for illustrative purposes. For any interface node, the tractions are referred to the surface
of the lower numbered zone.

5.1. Example 1: three-zoned cube

The ®rst example is a cube, consisting of three zones, subjected to uniform extension, i.e. u � 10 (Fig.
3). Both the central point B and the bottom central point C are represented by three independent nodes,
one for each face. The cube is discretised into 88 eight-noded elements (40, 24 and 24 for zones 1, 2 and
3, respectively) with 212 original nodes and 20 additional nodes. All the elements have the same
dimension (2:5� 2:5).

To begin with, we assume that the mechanical properties of the three zones are the same. Table 1
shows the computed tractions tz for the nodes associated with points A, B and C. Table 2 shows the
displacements at the point B, where the column headed by the title `Auxiliary equation' indicates the
results computed using the auxiliary equations presented in this paper, and the columns headed by the
titles `Unique at C' and `Unique at B' denote the results obtained by de®ning only one node at points C
and B, respectively. It is evident that these simpli®ed methods fail to capture the correct solution.

Inspection of these tables shows that the auxiliary equation algorithm presented in this paper gives
results in excellent agreement with the analytical solutions. The unique (single) node method can only
provide approximate results for two-zone intersections, while for three-zone intersections, the computed
results are unacceptable.

We now consider a case where the mechanical properties of each zone are di�erent. The tractions at
points B and C computed using the present algorithm are given in Table 3. The unique node method
was also applied to this case, with similar conclusions to the above.

Table 1

Calculated tractions tz for interface nodes

Point Node Analytical solution Auxiliary equation Unique at C Unique at B

A 1.0 1.0000 0.9995 0.4857

B 1 ÿ1.0 ÿ1.0000 ÿ1.0089
2 ÿ1.0 ÿ1.0000 ÿ0.9994 ÿ7.6385
3 0.0 0.0000 0.0030

C 1 ÿ1.0 ÿ1.0000 ÿ24.0765
2 ÿ1.0 ÿ1.0000 ÿ0.0021 24.1647

3 0.0 0.0000 ÿ27.6547

(E1 � E2 � E3 � 1 and v1 � v2 � v3 � 0).

Table 2

Calculated displacements at point B

Analytical

solution

Auxiliary

equation

Unique

at C

Unique

at B

ux 0.0 0.0000 ÿ0.0005 ÿ3.7981
uy 0.0 0.0000 ÿ0.0006 ÿ1.7823
uz 5.0 5.0000 4.9929 ÿ0.8397

(E1 � E2 � E3 � 1 and v1 � v2 � v3 � 0).
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5.2. Example 2: four-zoned thick cylinder

The second (3D) example is a thick circular cylinder subjected to internal pressure, p � 1. Figure 4
shows the mesh employed which was composed of four zones with 48 eight-noded elements (12 elements
for each zone), with 131 original nodes and 63 additional nodes. A quarter of the cylinder is analysed.

Table 3

Traction values

Point Node tx ty tz

B 1 1.5749 3.3347 ÿ0.6671
2 0.8857 ÿ2.4120 ÿ6.1122
3 ÿ0.8602 ÿ3.2954 1.1881

C 1 ÿ2.4271 ÿ5.6103 ÿ0.4534
2 ÿ0.4655 3.2384 ÿ6.6272
3 ÿ1.9077 ÿ5.1288 2.1881

(E1 � 5, E2 � 3, E3 � 1, and v1 � v2 � v3 � 0:2).

Fig. 4. Cylinder subjected to internal pressure.

Table 4

Radial displacements by di�erent methods

Point Analytical

solution

Auxiliary

equation

Unique

at D

Unique

at B

A 15.275 15.124 14.691 14.540

B 8.613 8.587 8.107 7.731

C 6.825 6.796 6.334 5.928

(E1 � E2 � E3 � E4 � 1).
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The x±y plane (at z � 20) is subjected to `roller' boundary conditions (uz � 0) and symmetry is assumed
about the z � 0 plane to simulate a state of plane strain. The vertical (x � 0) and horizontal (y � 0)
boundaries are also `roller' supports (i.e. ux � 0 and uy � 0, respectively).

As before, we ®rst consider the case of identical mechanical properties in all four regions
(E � 1, v � 0:3). Figs. 5 and 6 show the variations of the radial displacements and circumferential
stresses along the radial (r ) direction. We observe that the auxiliary equation algorithm gives excellent
agreement with the analytical solutions. The small discrepancies at the inner and outer surfaces may be
due to the rather coarse mesh adopted.

To compare the results obtained by analytical, auxiliary, and unique node methods, Table 4 shows the

Fig. 5. Variation of radial displacement vs radial distance (E1 � E2 � E3 � E4 � 1).

Fig. 6. Variation of circumferential stress vs radial distance (E1 � E2 � E3 � E4 � 1).

X.-W. Gao, T.G. Davies / International Journal of Solids and Structures 37 (2000) 1549±1560 1557



radial displacements at di�erent points. Again, it is evident that a `simple' approach is inadequate. To
examine the e�ect of zonal inhomogeneity on the circumferential stress along the radius ABC (in Fig.
4), analyses have been carried out for the two cases: (E1 � E2 � 1, E3 � E4 � 3) and
(E1 � E3 � 3, E2 � E4 � 1). In these analyses, the Poisson's ratio is taken to be 0.3 in all regions. Fig. 7
shows the results for the two cases. The radial displacement along the radius ABC is plotted in Fig. 8
From Fig. 7, we observe that the circumferential stress is discontinuous at the point B (more starkly for
the ®rst case) because of the non-homogeneous material properties at this interface. This phenomenon
cannot be captured using the conventional multi-region BEM program.

Fig. 7. Variation of circumferential stress along line ABC.

Fig. 8. Variation of radial displacement along line ABC.
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6. Conclusions

A novel method has been derived to establish the auxiliary equations necessary to deal with the
corner problem in 3D multi-region mechanics. A signi®cant feature of the method is that it does not
depend on Hooke's law. A strategy for solving the resulting system of equations is outlined. Some
illustrative numerical results are given which demonstrate the validity of the algorithm, and also the
shortcomings of algorithms which neglect the rigorous treatment of the corner problem.
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Appendix

Referring to Fig. 1, the components of the co-ordinate system can be expressed in terms of the
orthogonal axes system as follows (Lachat, 1975):

@x1
@x 01
� 1

jm1j ;
@x1
@x 02
� ÿcos y
jm1j sin y

;

@x2
@x 01
� 0;

@x2
@x 02
� 1

jm2j sin y
�A1�

where

jmkj �
������������������������������������������������������������
@x1

@xk

�2

�
�
@x2

@xk

�2

�
�
@x3

@xk

�2
s

�A2�

cos y � 1

jm1jjm2j
@xi

@x1

@xi

@x2
�A3�

xi � Na�x1, x2�xa
i �A4�

in which, k � 1, 2; i � 1, 2, 3 and Na�x1, x2� are the shape functions and xa
i is the i-th component of the

coordinates with respect to a-th node, with a taking the values through 1 to the number of element
nodes. From eqn (5):

@ t 0k
@x 0k
� Lpi

@ti
@xk

@xk
@x 0p

�A5�

in which, Lpi ( p = 1, 2) are the direction cosines of the local axes, x 01 and x 02, respectively, i.e.

L1i � 1

jm1j
@xi

@x1
, i � 1, 2, 3 �A6�
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L21 � n2L13 ÿ n3L12

L22 � n3L11 ÿ n1L13

L23 � n1L12 ÿ n2L11: �A7�
Substituting eqn (A5) into eqn (9) and noticing that ti � Nat

a
i , it follows that:

@xk
@x 0p

Lpi
@Na

@xk
tai � �r �ui ÿ fi �ni �A8�

where tai is the i-th component of the traction at the a-th node.
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